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ABSTRACT

The Gibbs sampler has been proposed as a general method for Bayesian calculation
in Gelfand and Smith (1990). However experience to date is almost exclusively in
applications assuming conjugacy where implementation is reasonably straightforward.
This paper describes a tailored rejection method approach for implementation of the Gibbs
sampler when nonconjugate structure is present. Several challenging applications are
presented for illustration.
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1. Introduction

In earlier work (Gelfand and Smith, 1990; Gelfand et. al., 1989) a sampling based

approach using the Gibbs sampler (Geman and Geman, 1984) was offered as a means for

implementing Bayesian data analysis. This approach is very broadly applicable but

experience to date resides almost exclusively in applications assuming conjugacy. Two

notable exceptions are Zeger and Karim (1989) and Racine-Poon et. al. (1990). By way of

clarification, in the context of a hierarchical Bayes model, conjugacy is taken to mean that

for any parameter in the model specification (likelihood z prior), integration of this model

with respect to this parameter may be achieved explicitly. This pragmatic definition

differs a bit from formal versions in e.g. Diaconis and Ylvisaker (1979) or in Morris (1983).

Conjugacy allows us to simplify the implementation of the Gibbs sampler enabling

almost routine fully Bayesian analysis of many standard problems. However, more

challenging modeling situations will not allow conjugagy as the following examples suggest:

(i) reference priors (Bernardo, 1979; Berger and Bernardo, 1989) and other versions of
"noninformative" priors (Berger, 1985) will not be conjugate with the likelihood.

(ii) nonlinear models, including generalized linear models, will have likelihoods as

functions of the model parameters which typically do not admit a conjugate form.

(iii) for hierarchical models, according to Berger (1985, p. 232) "the choice of a form for

the second or higher stage prior seems to have relatively little effect". However,

this is usually not the case at the first stage of prior specification where the form of

the prior, e.g., body and tails will have substar'ai.: euec,. on the inference. To assess

model robustness requires fully Bayesian analysis when the first stage prior is

nonconjugate.

To carry out the Gibbs sampler in the presence of nonconjugacy for at least some of

the model parameters requires sampling from nonstandardized densities as discussed below.

A means for accomplishing such sampling is the rejection method (Devroye, 1986; Ripley,

1986). The rejection method is formally defined in Section 3. The purpose of this paper is

to describe a tailored general rejection method approach for implementation of the Gibbs

sampler when some nonconjugate structure is present.

To clarify how nonstandardized densities arise we note that the Gibbs sampler

requires independent draws from the complete conditional distributions of the model

parameters (see Sec. 2). For any parameter in any hierarchical model, its complete

conditional distribution is the conditional distribution of the parameter given the data and

all other model parameters. But, it is then clear that for each model parameter its

complete conditional density is proportional to likelihood I prior. Often the hierarchical
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structure along with, for example, exchangeability assumptions greatly simplify these

distributions.
In the next section we briefly review the Gibbs sampler. Since it is a replicated

iterative Markovian updating scheme, the conditional levels for each complete conditional

distribution which needs to be sampled will change with each iteration and replication.

Standard use of the rejection method requires that a distinct envelope function be

developed for each such sampling. Unfortunately this envelope is used to generate but one

observation. As an alternative, in Section 3 we first note that a good multidimensional

envelope density will provide good complete conditional envelope densities. We then show

how to create such a multidimensional envelope density which also possesses complete

conditional distributions that are easy to sample.

In Section 4 we illustrate with three demanding modeling applications. Finally in

Section 5 we summarize noting, in addition, when our proposed method is likely to work

well and when not.

2. The Gibbs Sampler

For convenience, in this section densities will be denoted generically by square

brackets, so that joint, conditional and marginal forms for random variables U,V, appear as

[U,V], [U IV] and [V], respectively. The usual marginalization by integration is denoted

by forms such as (U] = f[UIV ] • [V]. For a collection of random variables [U1,U 2 ,...,Uk]

the complete conditional dr'us1ites can thus be denoted by [Us IUr) r * s], s = 1,2,...,k, and

the marginal densities by [Us], s = 1,2,...,k.

Given the ability to draw random variate samples of Us from [Us Ur, r#s] for

specified values of {Ur) r#s}, s = 1,2,...,k, the Gibbs sampler provides an iterative scheme

which enables us to make sample-based estimates, [Us], of the marginal densities, [US], s

= 1,2,... ,k. The scheme proceeds as follows: given an arbitrary starting set of values

U( 0 ) ,,U ( 0 ), we draw U( 1 ) from [UlIU( 0 ),...,U( 0 )], thenU1 ) from [U2 1U ' ) ,1 ""k 1 U1Ul

0. 0 and soonupto U1) from [Uk1U1)...,U( 1 ) to complete one iteration

of the scheme. After t such iterations we would arrive at joint a sample (U~t),...,Ukt)).

Geman and Geman (1984) show, under mild conditions, that (U~t),...,U~t)) d (U1,...,Uk)

. [U 1,U2 ,...,Uk] as t -- m. Hence for t large enough, Ult), for example, can be regarded as
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a sample variate from [Us]. Parallel replication of this process m times yields m iid

k-tuples (U '),. t j = 1,2,...,m. Note that sample size at, say, the w-th iteration

may be increased from m to any specified size by randomly reusing the U (w-) with
sj

replacement.

It is shown in Gelfand and Smith (1990) that a density estimate of the form

[U] = E [U I U~), r~s]/m(1j=1

is better than a kernel density estimate for [US]. This is not surprising since (1) takes

advantage of the known structure in the model whereas the kernel density estimate does

not. The form (1) is a discrete mixture distribution and is essentially a Monte Carlo

integration to accomplish the desired marginalization. Extension to expectations,

E[h(Us)], and more generally to densities and expectations for functions W(U 1 , U2 ,...,Uk)

is straightforward (see Gelfand and Smith, 1989 for details).

In the Bayesian context the Ui  are the unknown parameters (or possibly

unobserved data) in the model,and W would be any function of the parameters (or

unobserved data) which is of interest. All distributions are viewed as conditional on the

observed data, whence the marginal densities, [Us], become the desired marginal posterior

d Str. i,, ns of the parameters (or unobserved data). Moreover, the joint delsl-.,

[U1,... ,Uk] becomes the joint density of all the model parameters/unknowns given the

observed data. This density, only known modulo normalizing constant, will be denoted by

f(U1,...,Uk) where f is, in fact, likelihood I prior. Similarly all complete conditional

distributions will again be proportional to f and, in the absence of conjugacy, will not lead

to familiar standard forms such as normals and gammas. As a result, though the forms of

the densities required for use of the Gibbs sampler are known, sampling will require

random generation from nonstandardized densities. In Section 3 we suggest an approach to

accomplish this using a tailored version of the rejection method.

As noted above we prefer to use a density estimate of the form (1). In fact using

this form allows m to be much smaller (say m = 100) than needed for kernel density

estimates (say m = 5000). However, calculation of (1) will require, at the last iteration, m

normalizations of f which in turn requires in one-dimensional numerical integrations.

Simple trapezoidal or Simpson's rule integration to do this is quite fast still yielding
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substantial overall savings in run time compared with kernel density estimation.

Finally, we note that complete implementation of the Gibbs sampler requires that a

determination of t be made and that, across iterations, choice(s) of m be specified. In a

challenging application some experimentation with different settings for t and m will

likely be necessary. We do not view this as a deterrent since random generation is

generally inexpensive and since in many cases there may be no feasible alternative. In the

examples of Section 4, convergence was evaluated in a univariate manner by plotting

marginal posterior density estimates of the form (1) five iterations apart in order to judge

stability. Typically, a somewhat small m is used until convergence is concluded, at which

point, for a final iteration, m is increased by an order of magnitude to develop the

presented density estiamte. We make no claims for the optimality of this procedure.

Assessment of convergence is a complex issue which is currently very much in the empirical

domain.

3. A Tailored Rejection Method

In this section we develop a specialized version of the rejection method which is

well-suited to the sampling needs of the Gibbs sampler. First we review the basic rejection

algorithm method.

3.1 The Rejection Algorithm

The rejection algorithm for a nonstandardized iiwgcI-ble density f(U),

U = (UU,...Uk) proceeds as follows.

(i) Identify a density g(U) which may be readily sampled and such that there exists

M for which f(U)/g(U) < M for all U.

(ii) Generate U* from g(U).

(iii) Generate V from a U(0,1) distribution.

(iv) Accept U* if V < f(U*)/Mg(U*), otherwise return to (ii).

It may be shown (see Devroye, 1986 or Ripley, 1986) that the distribution of U* is

f(U)/ff(U) and also that the acceptance probability associated with this algorithm is

M-1 ff(U). Hence the smaller we can make M, that is, the more g resembles f, the more



efficient the sampling.

3.2 Split-normal and Split-t Envelope Functions

Implementation of the Gibbs sampler requires sampling from f viewed as a

function of, say, U1 for fixed U_ (U2 ,...,Uk). However the value of U_ changes with

each iteration and each replication. Customary use of the rejection method then requires

that a distinct envelope function gU_ (U) be developed for each U_ 1 . Moreover,
- -1

typically each such gU_ (U 1) is used to generate but one observation.

As an alternative, now viewing f as a k-dimensional function we propose, before

doing any sampling, to create a single k-dimensional density function g(U) which is a

good envelope for f and is such that for each Ui, g has complete conditional distributions

which are easy to sample. Formalizing notation and still taking i = 1 we write

g(U1,....Uk) = g1(VlIU_ 1 g2 (U 1 ). Note that gl(UlU_1 ) serves as an envelope for

the complete conditional distribution for U 1 arising from f. That is, if M is such that

f(U)/g(U) < M for all U then, as a function of U1  for fixed U 1 , f/gl - M'

Mg2 (U 1 ). In practice g1, g2 and M' are not calculated; acceptance of U* is

determined by the equivalent test (iv) abnve evaluating f and g at (U1, U 1 ).

How might a suitable g(t i . ,eveloped? Writing f(U) = likelihood(U)

prior(U), if U is the maximum likelihood estimate of U we may take g(U) = prior(U)

with M = likelihood(U) to implement the rejection method. This choice of g has at

least two drawbacks . First, since it only matches the prior, it need not be a good envelope

for f so that very inefficient sampling may result. Second, it requires prior(U) to be

proper (since we sample from g in the rejection method) where as, in fact, we only need f

proper. Hence, while this choice of g may be viewed as a possible backup we seek a

proper g which more closely resembles f.

In the context of noniterative Monte Carlo sampling with respect to a

nonstandardized density, Geweke (1989) proposes the use of an importance sampling

density which is a multivariate split-normal or split-t distribution. Such a density, g, is

designed to make the variability of the ratio f/g over the space of U small under g



which in turn makes the variance of the Monte Carlo integration small. Note that such a

g is desirable for our purposes since the less variable f/g is, the smaller M will be whence

the greater the acceptance probability and the more efficient our sampling.

Recall that in the Bayesian framework, modulo normalization, f is viewed as the

joint posterior density function of all the parameters (and perhaps any missing data) given

the observed data. With an increasing amount of data, under usual regularity conditions f

is approximately a multivariate normal density up to a proportionality constant (see e.g.

Berger 1985, p. 224). A convenient choice to approximate the mean of this normal

distribution is U, the mode of f. With regard to an approximate covariance matrix, the

preferred choice from an asymptotic viewpoint is the negative of the inverse Hessian

evaluated at U. The Hessian matrix H is defined by Hij = 2 auia u In two stage

models we might use the log likelihood rather than log f which amounts to replacing H

by the information matrix I.

Often both the H matrix and the I matrix are difficult to obtain since they

require the existence of and the evaluation of second derivatives. A differencing algorithm

(such as in Kass, 1987) can be used to provide reliable derivative-free estimates for the

matrices H or I thus avoiding formal differentiation. Since our objective is only to

approximate the covariance matrix, E, associated with f we need not use these

asymptotic forms but may instead adopt alternative choices for S. One simple approach

which avoids the differentiation problem is to approximate the surface log f(U) by a

quadra.> .nl-,Jn, e.g. (U - U)T V (U - U) whence E = -V - 1 . This approximation can

be straightforwardly developed by usual least squares methods fitting the quadratic to a

large set of log f values obtained by evaluating f at many points on a k-dimensional grid.

It may in fact prove easiest to first transform U to the k-dimensional unit square, obtain

the covariance matrix estimate and then transform this estimate back to the original scale

by the delta method. When there are strong correlations amongst the U's or when log f

is fairly flat H, I and V may be nearly singular making inversion awkward. This problem

can be alleviated appropriate reparametrization, i.e., transformation of U.

We note another approach which avoids both differentiation and inversion problems

but at the expense of computational effort that will become infeasible with increasing

dimensionality. We can obtain a piecewise uniform approximation to f and then obtain

the covariance matrix associated with this approximation. For simplicity of illustration
assume f is bivariate. Again, it may be easiest to transform (U1 .U2 ) to the unit square
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with resulting density proportional to h. Partition the unit square into a grid of r2 cells

and evaluate h at say the midpoint of each cell in the grid. Denoting these values by hij,

i, j = 1.r, replace the density h by the constant h for points in the (i,j) cell to

obtain the piecewise uniform approximation to h. Normalization of this approximate

density and calculation of its moments is straightforward. Thus we may approximate the

covariance matrix associated with h and, again using the delta method, that associated

with f.

The above discussion suggests taking g(U) to be N(U, S) for some convenient E.

However for more interesting situations involving small to moderate amounts of data,

although f will typically still be unimodal, it will likely be somewhat asymmetric and our

choice of E will likely be a weak covariance approximation. Geweke (1989) suggests that

an appropriate split-normal or split-t distribution be used in place of N(U, E). We now

develop the details of this approximation for our situation including the required complete

conditional distributions.

A standard univariate split-normal distribution denoted by SN(O,q,r) is defined by

the density

1 e-Z/q z > 02 2
4 '2/2q z>

{1 e--Z/2r, z > 0

To generate Z-SN(O,q,r) we draw c- 7(0,1) and take Z = qc if (>O, Z=rc if f<0. Let

Zt = (Zl,...,Zk) be a random vector such that Zi are independent with Zi-SN(O,qi,ri).

A general multivariate split normal arises by affine transformation of Z. In particular, it

is proposed to take g to be the distribution of U = U + EI/'z for i ri given below.

Choices for q, and r, are intended to make g a better envelope than N(U, E).

Geweke proposes that qi = sup vi(,), ri = sup vi(A) where
,&>O t,<O

vi = AI (2)

12(log f(U) - log f(u+E'2A(i)))
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and A(i) is a unit vector in the ith coordinate direction. Geweke notes that the &Is

yielding these maxim' orrespond to the positive and negative values respectively along the
th coordinate axis which maximize the ratio of the rate of decline of f,

f(U+A /2)(i))/f(U) to the rate of decline of g, g(U+&E '/2A(i)/g(U). Choice of qi' ri in

this ,,anner gives f/g the same value at & such that qi = sup (Vi(A)) (ri= sup (Vi(A))) as
A>O &<O

at a = 0+(0-). Such matching aids in making f/g "more constant" in each coordinate

direction. Exact calculation of qi, ri is an analytical problem generally without explicit

solution. Practically, these values are obtained only approximately by evaluating vi(A)

over the set fa = j/2, j = ± 1, ± 2,...,±12}.

The tail behavior associated with the form of f might suggest that a better choice

for g would be a multivariate split-t distribution. A standard univariate split-t with

v d.f., ST(v; 0,q,r) arises as the distribution of t = Z/ V'I where Z-SN(0,q,r)

independent of V, a X2 random variable with v d.F. To generate t-ST(v, 0,q,r) we

draw -t. and take t = q if > o, t = r if < o. More generally let t = (tl,...,tk)

be a random vector where t i = Zi/lV7 with Zi  independent, Zi-SN(0,qi,ri)

independent of V-X2. A general multivariate split-t arises by affine transformation of t.

In particular it is proposed to take g to be the distribution of U = U + E /2t with q, and

ri calculated, replacing vi(a) in (2) with

v__(_ _ _ _ _(3)

Remarks below (2) are applicable here.

We comment that it seems preferable to transform (reparametrize) each Ui to

have R1 as support before embarking on the creation of g to "match" f.

Returning to the multivariate split-normal it is perhaps easiest to think of the

transformation from Z to U as arising from 2 k one-to-one transformations determined

by the vector sgnZ = (sgn Z1, sgn Z2,...,sgn Zk). Index these transformations by j =

1.2,._2 k  with associated partitions of Rk denoted by A On A. there will be an

associated set of q's and r's. In fact let dji=q2 if sgnZ=1 on A., 1 if
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on A. and let D. be a diagonal matrix with diagonal entnes dji. Then on A j,

Z-N(O,D.) and thus the density for Z is, in obvious notation

2k

h(Z) = Z N(0,D.)(Z) • 1A (Z) (4)
j=i -

If Bj is the image of Aj under the transformation U = U + EI/2Z then the density for

U is

2k

g(U) = EX N(U. EI/2Dj(/)t)(u) 1 (U) (5)
" j=i "-j

The Gibbs sampler requires sampling from the complete conditional distributions

associated with f. By earlier remarks, this requires sampling from the complete

conditional distributions associated with g. But, for example, what is g(U 1 I U 1 ) for the

density (5)? We now show that this distribution is a univariate split normal which can be

easily sampled. Choose for the upper triangular (Cholesky) decomposition of 2

which we denote by

r Tll T 12

T = [ 0 22

Note that, by using T, Ul uniquely determines Z = T2(U - U_1 ). Furthermore

U1 = WI(U_I) + TllZ1 wh( '2 WI(U_ ) = U1 + T 1 2T21(U 1-U_). Hence U I U 1

V IIZl - (Wl(U 1) + T11Zl)IZ_l Wl(. I) + TllZl i.e. UlIU-, has a

univariate split normal distribution. Moreover U1 I U_ is easily sampled by drawing Z1

- SN(0,ql,rl) and making the linear transformation Wl(U_) + TllZ 1. We remark that

T and U do not change from iteration to iteration, from replication to replication. Given

.'_1 we need only calculate W(U__) which just involves linear operations on U_I.

In the multivariate split-t case t = (tl,...,tk) arises from ti = Zi/V7' with Z.
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independent, Zi - SN(O,qi,ri) independent of V -A Then, analogous to (4), with

obvious notation

2k
h(t) = Z iz(, .(t) (6)

j=1 A "

and for U=U+EI/2t,

k2 2 1/2 t
g(U) = E t v( U" E/DjP )(U) I B(U) (7)

Again we require associated complete conditional distributions. Careful evaluation shows

that U I U_1  now has a univariate split-t distribution. More precisely Ul I -

WI(U_I) + TllVI(U_I)tl where t 1 - ST(v+k-1, 0, q1 , rl) and VI(U_) =

((v+k-1) 1 (v + Y Z2/ei))/2 with the Z. being components of ZI defined above and
22 2

ei = q2 or r i according to whether Zi > 0 or < 0. Given U_1 we need to calculate

V(U 1 ) in addition to WI(U. 1 ).

We commented earlier, that in implementing the rejection method wa w-,,:.d test a
Ugenerated from U I__ by using (iv) in Section 3.1. Computatio. .plified by

k 1 1
noting that g(U) = .T • h(T (U - U)) with h as in (4) or in (6) accordingly.

i=1 - -

However it still remains to choose M. It seems natural to look at the ratio f/g at the

mode U but, as yet, g is undefined at U i.e. h is undefined at 0. Let h(0) =

a H min(q,, ril) where in the split-normal case a = (2 r)- k / 2 while in the split-t case
i=1 k

a (r(v/ 2 )(7v) Then g(V) = H T.. 1  h(0). Define M(U) = f(U)/g(U)." i=l -..

For both the split-normal and split-t cases as a result of the way h was chosen along

with its definition at 0 M(U) will bound f/g in a neighborhood of U. In practice,

choosing M = bM(U) with 1.2<b<5 has provided an overall bound for f/g. In our

experience choice of d.f.(v) to accommodate the tail behavior of f is more critical.
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If, during the course of sampling, a Uo arises such that f(U 0 )/g(U0 ) violates our
bound we do a local search in a neighborhood of U 0 and revise M accordingly. Before M

is revised the magnitude of f(U0 )/Mg(Uo) provides a rough idea of the severity of the

violation. Of course if a violation occurs then some of the previously generated variates
might not have been retained with this revised M and more importantly we were not

sampling from the desired complete conditional distribution. Before exploring this point
further suppose that the change in M is small (as is typically the case in our experience)

so that most of the previously generated variates would still be retained. Then we would
expect the joint distribution of U at the current iteration of the sampler to be closer to

the converged joint distribution than when we started. Thus we would expect no

advantage to starting the sampler anew as opposed to continuing from the current

iteration.

Continuing with these ideas, suppose for a given M we define SM = fU

f(U)/g(U) > M}. Following the argument which justifies the rejection method we may

show that the distribution of U is actually

J$1 f(U)d U  + MPg(SM) T:J

MgU) (8)

c f(U)dU + MPg(SM)
M

Unfortunately I f(U)d(U) > MP (S,) so that even if Pg(SM) is very small we cannot

SM - .g(S M )

be sure that (8) is close to f(U)/ff(U)dU. Hence complete conditional distributions

arising from (8) need not be close to complete conditional distributions arising from f(U).

More optimistically, if for example given UI the set of U 1 such that f(U)/g(U) > M

is a null set then we are, in fact, sampling from the complete conditional distribution of

U1 U I U arising from f.

We conclude this section with an important remark. When k is large,
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development of g(U) will be made difficult because of complications in obtaining U, E

and T. However, in most applications f(U) is a product of functions. Hence, if we need

to sample from f viewed as a nonstandardized density for U1 U 1 we need only consider

the terms in this product involving U1 and only the variables say U2 ,...,Uk,, appearing

in these terms. That is, we factor f(U) as f(Ul,...,Uk) = fl(U 1, U2 ,...,Uk,) f2 (U- 1 ) so

that g need only be a k' dimensional envelope function. Typically, k' is much smaller

than k as, for instance, in exchangeable models.

4 Examples

In this section we apply the tailored rejection method to three nonconjugate

modeling scenarios. Each has been chosen to illustrate one or more of points (i)-(iii) of

Section 1.

4.1 Asymptotic Regression Model

Consider a model having mean structure

X.
E(Yi)= a,- 0! 1, Q,3>0,0<. < 1 (9)

This equation describes a growth curve which has no inflection point and approaches an

asymptote as Xi tends to infinity. Models of this type find agricultural, biological, and

engineering application. To complete the specification of the model, we assume
independent Yi - N(E(Yi), a 2 ), i=l,...,n, and adopt the vague prior 7r(a,#,-ya) a (aa)- 1

considered by Hills (1989). While the prior we have adopted is not a reference prior in the

sense of Bernardo (1979), it is a vague prior in the spirit of (i) in Section 1. In any event,
the nonlinear structure in (9) precludes conjugate priors as noted in (ii) in Section 1.

In order to implement the method of Section 3, we observe that f = likelihood I

prior takes the form
1 n Xi)2

f(a,,,a) = -l a-n+l)exp (-a+ '

so that none of the four required complete conditional distributions are available in closed

form. Hence four split-t envelopes will be needed.
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For numerical illustration we use a data set from Ratkowsky (1983), displayed
in Table 1, which tallies length (Y) and age (X) for 27 captured samples of the sirenian
species dugong (more commonly known as the sea cow). To implement our method we
first transform each of the variables to R1 by letting U1 = loga, U2 = logo3, U3 = logit('Y)

= log(-,/(1--y)), and U4 = loga. We then approximate the covariance matrix, Z, of U,

using the quadratic regression approach mentioned above. We obtain four Cholesky
matrices T from Z by permuting the elements of E appropriately to make each of the
Ui in turn the first element of U. For this example we chose split-t distributions having

v = 5 d.f.

[INSERT TABLE 1 ABOUT HERE]

Figures l(a)-(c) show the marginal posterior density estimates for U1, U2 and U3

that result from the use of (1) on m=500 Gibbs iterates after completing t=50 iterations

of the algorithm. We remark that density estimates on the original scales could be
obtained via routine transformation as mentioned above (Gelfand and Smith, 1989). The
posterior modes, .974, -. 014 and 1.884 are comparable to the least squares estimates,
.981, -. 028 and 1.932 obtained by Ratkowsky (1983, p. 96).

4.2 Hierarchical Event Rate Model

To model arrivals or events occurring over known lengths of time we may use an

exchangeable hierarchical model. Fol example, if Y. is the number of occurrences over an

exposure time of length ti, i=l,...,k, we might assume that each Yi is a realization from

an independent Poisson process having constant rate Ai i.e., Y i nd (At) We then

assume that the Ai are independent and identically distributed from some second stage

distribution .. The conjugate choice for 7r would be a gamma distribution, so that the
complete conditional distributions for the Ai are updated gammas (see Gelfand and

Smith, 1990). However, in order to allow for more dispersion and possible outliers in the
rates, we might prefer a lognormal or logstudent-t prior for the Ai, neither admitting
closed form complete conditionals for the A..

To develop the competing models more explicitly in the gamma case, we have at the
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second stage Aii i d gamma(a,3), i=l,...,k, where for convenience a is a known tuning

constant. At the third stage of the hierarchy, we suppose 3 - IG(c,d), where IG denotes

the inverse (reciprocal) gamma distribution having mode d/(c-1), and c and d are

known constants. In the log-t case, letting fi = log(Ai) we have -iid tw(Oa), where 0

and a are unknown location and scale parameters, respectively, and w is specified (note

that this parameter has nothing to do with v, the degrees of freedom for our envelope

split-t distribution). At the third stage of this model, we suppose 0 - N(A,,r 2 ) and a2 -
2. 2

IG(a,b), 0 and a independent, jL, 7- , a and b known. Taking w sufficiently large leads

to the lognormal model for Ai mentioned above.

Implementation of the Gibbs sampler is routine in the gamma case (see Gelfand and

Smith 1990 for details). In the log-t case none of the (k+2) necessary complete

conditionals are standard distributions and hence, we apply the methods of Section 3.

Since the likelihood factors into k pieces each involving only Ai, 0 and a2 , the remark at

the end of Section 3 may be used to reduce the dimensionality of each of the first k

component problems. However, to streamline the computer code we chose to ignore these

savings, simply using the same (k+2)--dimensional f function for each parameter under

the parametrization Ui = (i = logAi, i=1,...,k, Uk+l = 0, and Uk+ 2 = loga. Here the

covariance matrix is approximated using a derivative-free numerical Hessian.

The data in Table 2 are taken from Worledge, Stringham, and McClymont (1982),

and record the number of failures of pumps over given lerict.hc of time for several systems of

a certain nuclear power plant. Gaver and O'Muircheir -,.igh (1987) also fit both the

gamma and log-t models described above to this data, but employ an empirical Bayes

approach, using the data to estimate all the parameters at the second stage of the model

instead of placing third stage prior distributions on them. We make our analysis somewhat

comparable in the case of the gamma by choosing a = a = 1.802, the value of the method

of moments estimator of a based on the marginal distribution of the data m(YI a,3), and

taking c = 2.01 and d = 1.01, so that 3 has prior mean 1 and prior standard deviation2
10. In the log-t case, we specify the priors on 0 by letting A = -1, 7 = 1, and the prior

on a2 by letting a = 2.01 and b = 1.01 (again, a rather vague prior with mean l and

standard deviation 10). We use split-t distributions in our rejection algorithm, taking v

- 10.

[INSERT TABLE 2 ABOUT HERE]
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The estimated posterior distributions for f 15 and c10 under the gamma model,

the log-t model with w = 5, and the log-t model with w = 50 (essentially a lognormal
nodel) are shown in Figures 2(a) - (c) using (1) after t = 30 iterations with m = 100
replications. The results are similar to those of Gaver and O'Muircheartaigh (1987, p. 11).
We see that, as expected, the gamma model generally produces posterior distributions that
are more highly peaked and less dispersed Also note that the gamma model seems to
encourage more shrinkage to the grand mean of the observed rates. This is especially true

for ES, a rate corresponding to a system having a shorter history (smaller ti).

4.3 Generalized Logistic Regression

As a final illustration we consider a class of models that find broad application in
the social and biological sciences, especially in the context of dose-response studies.
Suppose we have a Bernoulli response variable Z and a continuous predictor variable W.
Typically one models the probability of a response at a given level of the predictor as

P(w) = y h(s)ds (10)
-M

where y = (w-4)/c, as and o unknown. The most common assumption is to let h be
the logistic distribution, which enables the closed form expression

P(w) = exp y/(1+exp y), (11)

i.e. the familiar logistic regression model. Prentice (1976) extended (11) introducing the

class of models generated by taking

h(s) = exp(sml)(1 + exp(s)) 1 1 / 0(ml 1,m2), mlm 2 > 0, (12)

where 9(.,.) represents the beta function. Prentice remarks that with appropriate choice

of ml,m2 other familiar models for binary response date emerge. More importantly he

notes the potential improvement in fit afforded by the additional parameters. One

convenient special case that enables an explicit form for P(w) is to set m2 = 1, obtaining
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m 1

P(w) = [exp y/(l+exp y)] (13)

To effect a Bayesian analysis using model (13) we need to specify priors on A, a2

and m1. Broad modeling possibilities arise by letting m 1 - Gamma(ao,bo), ju - N(Co,do) ,

and a2 - IG(eo,fo), ml , i, and a 2 a priori independent and ao, bo, Co, do, e° and fo

known. If we observe Xi responses out of ni observations at predictor level wi, i=1,...,k,

f takes the form

f(A, a, mi)

k Xi  )n-X m fo ao-1 2(e+1)
{I1 [P(wi)] [lP(wi)Ii i {-1 ()21 (m' /20
i=1 0 a

with P(w) as given in (13). Again, the three complete conditional distributions will be

sampled using the rejection method.

Our illustrative data set for this model is taken from Bliss (1935), and gives the

proportion of adult flour beetles killed after five hours exposure to various levels of gaseous

carbon disulphide. These data, displayed in Table 3, have been much-analyzed in the

literature since their variability cannot be adequately explained by the standard logit

mo-'W,:'!"' We will compare the posterior distribution of A (=LD5 0 in the dose-resp!±s.

context) under the "full" model (13) and the "reduced" model (11).

[INSERT TABLE 3 ABOUT HERE)

For prior specification, we let a = .25 and bo = 4, so that m1 has prior mean 1

(the "reduced" value) and prior variance 4. We take rather vague priors on g and a2 by
letting co = 2, d 0 10, e0 = 2.000004, and f = .001 (so that u2 has prior mean .001

and prior standard deviation .5). Using the obvious parametrization U1 = A, U2 = loga,

and U3 = log m1 , empirical evidence suggests a multivariate split-t distribution with V =

3 to insure adequate domination of f in the tails. The covariance matrix is approximated

using the quadratic regression approach.

Figure 3(a) shows the posterior distribution of LD5 0 under the full model (solid
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line) and the reduced model (dashed line) arising from t = 50 iterations with m = 500

replications. The full model posterior mode of 1.815 is very close to the MLE value A =

1.818 reported by Prentice (1976). The small overlap between the two posteriors in Figure

3(a) is consistent with the alleged lack of fit of the reduced model. Figure 3(b) shows

similar problems in estimating U2 = log(a); its posterior distribution under the reduced

model is also inappropriately centered and too highly concentrated. Still further evidence

of the inadequacy of the reduced model is provided by the marginal posterior of U3 =

log(ml) in Figure 3(c). Here we see the value assumed under the reduced model, U3 = 0,

is located in the extreme right hand tail of the estimated posterior.

5. Summary and Comments

To carry out calculations needed for Bayesian inference the Gibbs sampler is

attractive in that, by utilizing complete conditional distributions, multivariate concerns

become univariate ones. Moreover previous work (Gelfand and Smith, 1990; Gelfand et.

al., 1989; Carlin et. al., 1989; Gelfand et. al., 1990) shows this approach to be a reasonably

straightforward means for implementing fully Bayesian inference under conjugacy. This

paper demonstrates that the Gibbs sampler can handle nonconjugate cases as well.

Nonetheless, problems which plague other techniques for Bayesian calculation (such

techniques are discussed in Naylor and Smith, 1982, 1988; Smith et al, 1985, 1987; Tierney

and Kadane, 1986; Geweke, 1989) will also cause difficr.:es --r the Gibbs sampling

approach. Such problems include disagreement between likelihood and prior,

parametrization and flatness of the likelihood, strong posterior dependence amongst the

parameters and of course high dimensionality. In such situations, successful use of the

Gibbs sampler will require "tweaking". The severity of the above problems will dictate the

extent of fine tuning required. Hopefully the conceptual simplicity of this iterative,

univariate approach will simplify such matters.

We anticipate (and our examples support this) that the approach of Section 3 will

be most effective in situations involving complicated likelihood but relatively low

dimension or in higher dimensional situations as described at the end of Section 3 where for

any parameter the number of other model parameters entering into its complete

conditional distribution will be somewhat small.

Lastly we note that use of this rejection method by means of a distinct but

convenient envelope for each iteration and each replication is described in Racine-Poon et.

al., (1990). Extension of this approach certainly merits further investigation as does
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comparison through challenging applications with the approach of this paper.
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Table 1. Length (Y) Versus Age (X) for the Sirenian Species Dugong

X 1 1.5 1.5 1.5 2.5 4.0 5.0 5.0 7.0
Y 1.80 1.85 1.87 1.77 2.02 2.27 2.15 2.26 2.35

X 8.0 8.5 9.0 9.5 9.5 10.0 12.0 12.0 13.0
Y 2.47 2.19 2.26 2.40 2.39 2.41 2.50 2.32 2.43

X 13.0 14.5 15.5 15.5 16.5 17.0 22.5 29.0 31.5
Y 2.47 2.56 2.65 2.47 2.64 2.56 2.70 2.72 2.57

Table 2. Pump Failures (t in thousands of hours)

System X. tj

1 5 94.320
2 1 15.720
3 5 62.880
4 14 125.760
5 3 5.240
6 19 31.440
7 1 1.048
8 1 1.048
9 4 2.096
10 22 10.480

Table 3. Observed Flour Beetle Mortality Dat,

Dosage No. of Beetles
CS 2  Killed Exposed

1.6907 6 59
1.7242 13 60
1.7552 18 62
1.7842 28 56
1.8113 52 63
1.8369 53 59
1.8610 61 62
1.8839 60 60



Figure 1. Estimated posteriors, dugong data
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Figure 2. Estimated posteriors, pump failure data
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Fig ure 3. Estimated posteriors, beetle data
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ABSTRACT

The Gibbs sampler has been proposed as a general method for Bayesian calculation

in Gelfand and Smith (1990). However experience to date is almost exclusively in

applications assuming conjugacy where implementation is reasonably straightforward.

This paper describes a tailored rejection method approach for implementation of the Gibbs

sampler when nonconjugate structure is present. Several challenging applications are

presented for illustration.

I
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